Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.585
Filtrar
1.
Sci Rep ; 14(1): 8128, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584196

RESUMO

Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA ß-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA ß oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.


Assuntos
Fatores de Transcrição ARNTL , Insuficiência Cardíaca , Ratos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Monocrotalina , Gastos em Saúde , Interleucina-6/metabolismo , Ratos Wistar , Ritmo Circadiano/genética , Tecido Adiposo Marrom/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Lipase/metabolismo , RNA Interferente Pequeno/metabolismo , Lipídeos
2.
Biol Pharm Bull ; 47(4): 809-817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583954

RESUMO

Several reports assume that myocardial necroptotic cell death is induced during the development of chronic heart failure. Although it is well accepted that angiotensin II induces apoptotic cell death of cardiac myocytes, the involvement of angiotensin II in the induction of myocardial necroptosis during the development of heart failure is still unknown. Therefore, we examined the role of angiotensin II in myocardial necroptosis using rat failing hearts following myocardial infarction and cultured cardiomyocytes. We found that administration of azilsartan, an angiotensin II AT1 receptor blocker, or trandolapril, an angiotensin-converting enzyme inhibitor, to rats from the 2nd to the 8th week after myocardial infarction resulted in preservation of cardiac function and attenuation of mixed lineage kinase domain-like (MLKL) activation. Furthermore, the ratio of necroptotic cell death was increased in neonatal rat ventricular cardiomyocytes cultured with conditioned medium from rat cardiac fibroblasts in the presence of angiotensin II. This increase in necroptotic cells was attenuated by pretreatment with azilsartan. Furthermore, activated MLKL was increased in cardiomyocytes cultured in conditioned medium. Pretreatment with azilsartan also prevented the conditioned medium-induced increase in activated MLKL. These results suggest that angiotensin II contributes to the induction of myocardial necroptosis during the development of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Ratos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , Meios de Cultivo Condicionados/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos , Proteínas Quinases/metabolismo
3.
Nat Commun ; 15(1): 2953, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580662

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction. We have previously reported that statins prevent endothelial dysfunction through inhibition of microRNA-133a (miR-133a). This study is to investigate the effects and the underlying mechanisms of statins on HFpEF. Here, we show that statins upregulate the expression of a circular RNA (circRNA-RBCK1) which is co-transcripted with the ring-B-box-coiled-coil protein interacting with protein kinase C-1 (RBCK1) gene. Simultaneously, statins increase activator protein 2 alpha (AP-2α) transcriptional activity and the interaction between circRNA-RBCK1 and miR-133a. Furthermore, AP-2α directly interacts with RBCK1 gene promoter in endothelial cells. In vivo, lovastatin improves diastolic function in male mice under HFpEF, which is abolished by loss function of endothelial AP-2α or circRNA-RBCK1. This study suggests that statins upregulate the AP-2α/circRNA-RBCK1 signaling to suppress miR-133a in cardiac endothelial cells and prevent diastolic dysfunction in HFpEF.


Assuntos
Insuficiência Cardíaca , Inibidores de Hidroximetilglutaril-CoA Redutases , MicroRNAs , Animais , Masculino , Camundongos , Células Endoteliais/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , MicroRNAs/metabolismo , RNA Circular/genética , Volume Sistólico/fisiologia
4.
Physiol Rep ; 12(7): e15990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575554

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are rapidly gaining ground in the treatment of heart failure (HF) with reduced ejection fraction (HFrEF) and acute myocardial infarction (AMI) by an unknown mechanism. Upregulation of Na+/H+ exchanger 1 (NHE1), SGLT1, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the diseased hearts was found to be attenuated by prolonged SGLT2i treatment. Unfortunately, dapagliflozin is not well understood as to how Na+/Ca2+ homeostasis is affected in cardiomyocytes. In this study, we aimed to investigate whether mechanical stretch in cardiomyocytes upregulate SGLT2, resulted to loss of Na+/Ca2+ homeostasis via ERK and eNOS signaling. AMI (+) and AMI (-) serum levels were estimated using ELISA assays of TGFß-1 or endoglin (CD105). Human cardiomyocyte cell line AC16 was subjected to different stresses: 5% mild and 25% aggressive, at 1 Hz for 24 h. Immunofluorescence assays were used to estimate troponin I, CD105, SGLT1/2, eNOSS633, and ERK1/2T202/Y204 levels was performed for 5% (mild), and 25% elongation for 24 h. AMI (+) serum showed increased TGFß1 and CD105 compared to AMI (-) patients. In consistent, troponin I, CD105, SGLT1/2, eNOSS633 and ERK1/2T202/Y204 were upregulated after 25% of 24 h cyclic stretch. Dapagliflozin addition caused SGLT2 inhibition, which significantly decreased troponin I, CD105, SGLT1/2, eNOSS633, and ERK1/2T202/Y204 under 25% cyclic stretching. In summary, SGLT2 may have sensed mechanical stretch in a way similar to cardiac overloading as in vivo. By blocking SGLT2 in stretched cardiomyocytes, the AMI biomarkers (CD105, troponin I and P-ERK) were decreased, potentially to rescue eNOS production to maintain normal cellular function. This discovery of CD105 and SGLT2 increase in mechanically stretched cardiomyocytes suggests that SGLT2 may conceive a novel role in direct or indirect sensing of mechanical stretch, prompting the possibility of an in vitro cardiac overloaded cell model, an alternative to animal heart model.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Animais , Endoglina/metabolismo , Insuficiência Cardíaca/metabolismo , Regulação para Cima , Transportador 2 de Glucose-Sódio/metabolismo , Troponina I/metabolismo , Volume Sistólico , Miócitos Cardíacos/metabolismo
5.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Humanos , Adulto , Ratos , Animais , Idoso , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Oxirredução , Hipertrofia/metabolismo , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia
6.
BMC Cardiovasc Disord ; 24(1): 197, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580957

RESUMO

BACKGROUND: Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS: HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS: Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION: HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.


Assuntos
Proteínas da Matriz Extracelular , Insuficiência Cardíaca , Função Ventricular Esquerda , Animais , Ratos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Volume Sistólico , Proteoglicanas/genética , Proteoglicanas/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
7.
Signal Transduct Target Ther ; 9(1): 94, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644381

RESUMO

Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.


Assuntos
Fibrose , Proteínas de Homeodomínio , Miocárdio , Humanos , Camundongos , Animais , Fibrose/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Camundongos Knockout , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Modelos Animais de Doenças , Masculino
8.
Eur J Med Res ; 29(1): 253, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659000

RESUMO

The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.


Assuntos
Produtos Biológicos , Insuficiência Cardíaca , Ferro , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Ferro/metabolismo , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Animais , Ferroptose/efeitos dos fármacos , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Antioxidantes/uso terapêutico
9.
Sci Rep ; 14(1): 9274, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654053

RESUMO

Myocardial infarction (MI) is the leading cause of premature death. The death of cardiomyocytes (CMs) and the dysfunction of the remaining viable CMs are the main pathological factors contributing to heart failure (HF) following MI. This study aims to determine the transcriptional profile of CMs and investigate the heterogeneity among CMs under hypoxic conditions. Single-cell atlases of the heart in both the sham and MI groups were developed using single-cell data (GSE214611) downloaded from Gene Expression Omnibus (GEO) database ( https://www.ncbi.nlm.nih.gov/geo/ ). The heterogeneity among CMs was explored through various analyses including enrichment, pseudo time, and intercellular communication analysis. The marker gene of C5 was identified using differential expression analysis (DEA). Real-time polymerase chain reaction (RT-PCR), bulk RNA-sequencing dataset analysis, western blotting, immunohistochemical and immunofluorescence staining, Mito-Tracker staining, TUNEL staining, and flow cytometry analysis were conducted to validate the impact of the marker gene on mitochondrial function and cell apoptosis of CMs under hypoxic conditions. We identified a cell subcluster named C5 that exhibited a close association with mitochondrial malfunction and cellular apoptosis characteristics, and identified Slc25a4 as a significant biomarker of C5. Furthermore, our findings indicated that the expression of Slc25a4 was increased in failing hearts, and the downregulation of Slc25a4 improved mitochondrial function and reduced cell apoptosis. Our study significantly identified a distinct subcluster of CMs that exhibited strong associations with ventricular remodeling following MI. Slc25a4 served as the hub gene for C5, highlighting its significant potential as a novel therapeutic target for MI.


Assuntos
Apoptose , Infarto do Miocárdio , Miócitos Cardíacos , Análise de Célula Única , Transcriptoma , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Análise de Célula Única/métodos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/genética , Masculino , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Camundongos
10.
J Cell Mol Med ; 28(7): e18238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509729

RESUMO

Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of total heart failure patients and is characterized by peripheral circulation, cardiac remodelling and comorbidities (such as advanced age, obesity, hypertension and diabetes) with limited treatment options. Chidamide (HBI-8000) is a domestically produced benzamide-based histone deacetylase isoform-selective inhibitor used for the treatment of relapsed refractory peripheral T-cell lymphomas. Based on our in vivo studies, we propose that HBI-8000 exerts its therapeutic effects by inhibiting myocardial fibrosis and myocardial hypertrophy in HFpEF patients. At the cellular level, we found that HBI-8000 inhibits AngII-induced proliferation and activation of CFs and downregulates the expression of fibrosis-related factors. In addition, we observed that the HFpEF group and AngII stimulation significantly increased the expression of TGF-ß1 as well as phosphorylated p38MAPK, JNK and ERK, whereas the expression of the above factors was significantly reduced after HBI-8000 treatment. Activation of the TGF-ß1/MAPK pathway promotes the development of fibrotic remodelling, and pretreatment with SB203580 (p38MAPK inhibitor) reverses this pathological change. In conclusion, our data suggest that HBI-8000 inhibits fibrosis by modulating the TGF-ß1/MAPK pathway thereby improving HFpEF. Therefore, HBI-8000 may become a new hope for the treatment of HFpEF patients.


Assuntos
Insuficiência Cardíaca , Piridinas , Humanos , Insuficiência Cardíaca/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Volume Sistólico , Recidiva Local de Neoplasia , Benzamidas/farmacologia , Fibrose
11.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488029

RESUMO

Cardiovascular diseases are caused by pathological cardiac remodeling, which involves fibrosis, inflammation and cell dysfunction. This includes autophagy, apoptosis, oxidative stress, mitochondrial dysfunction, changes in energy metabolism, angiogenesis and dysregulation of signaling pathways. These changes in heart structure and/or function ultimately result in heart failure. In an effort to prevent this, multiple cardiovascular outcome trials have demonstrated the cardiac benefits of sodium­glucose cotransporter type 2 inhibitors (SGLT2is), hypoglycemic drugs initially designed to treat type 2 diabetes mellitus. SGLT2is include empagliflozin and dapagliflozin, which are listed as guideline drugs in the 2021 European Guidelines for Heart Failure and the 2022 American Heart Association/American College of Cardiology/Heart Failure Society of America Guidelines for Heart Failure Management. In recent years, multiple studies using animal models have explored the mechanisms by which SGLT2is prevent cardiac remodeling. This article reviews the role of SGLT2is in cardiac remodeling induced by different etiologies to provide a guideline for further evaluation of the mechanisms underlying the inhibition of pathological cardiac remodeling by SGLT2is, as well as the development of novel drug targets.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Remodelação Ventricular , Hipoglicemiantes/farmacologia , Insuficiência Cardíaca/metabolismo
12.
Cells ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534346

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is associated with exercise intolerance due to alterations in the skeletal muscle (SKM). Leucine supplementation is known to alter the anabolic/catabolic balance and to improve mitochondrial function. Thus, we investigated the effect of leucine supplementation in both a primary and a secondary prevention approach on SKM function and factors modulating muscle function in an established HFpEF rat model. Female ZSF1 obese rats were randomized to an untreated, a primary prevention, and a secondary prevention group. For primary prevention, leucine supplementation was started before the onset of HFpEF (8 weeks of age) and for secondary prevention, leucine supplementation was started after the onset of HFpEF (20 weeks of age). SKM function was assessed at an age of 32 weeks, and SKM tissue was collected for the assessment of mitochondrial function and histological and molecular analyses. Leucine supplementation prevented the development of SKM dysfunction whereas it could not reverse it. In the primary prevention group, mitochondrial function improved and higher expressions of mitofilin, Mfn-2, Fis1, and miCK were evident in SKM. The expression of UCP3 was reduced whereas the mitochondrial content and markers for catabolism (MuRF1, MAFBx), muscle cross-sectional area, and SKM mass did not change. Our data show that leucine supplementation prevented the development of skeletal muscle dysfunction in a rat model of HFpEF, which may be mediated by improving mitochondrial function through modulating energy transfer.


Assuntos
Insuficiência Cardíaca , Animais , Feminino , Ratos , Suplementos Nutricionais , Insuficiência Cardíaca/metabolismo , Leucina/metabolismo , Músculo Esquelético/metabolismo , Volume Sistólico/fisiologia
13.
Circ Res ; 134(8): 1006-1022, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38506047

RESUMO

BACKGROUND: In heart failure, signaling downstream the ß2-adrenergic receptor is critical. Sympathetic stimulation of ß2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind ß2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS: cAMP accumulation in real time downstream of the ß2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS: AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS: AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Humanos , Masculino , Camundongos , Feminino , Animais , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Regulação para Cima , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Cardiopatias/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Receptores Adrenérgicos/metabolismo , Proteínas de Ciclo Celular/genética , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo
14.
J Cardiothorac Surg ; 19(1): 129, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491551

RESUMO

OBJECTIVE: Previous studies have reported that neutrophil extracellular traps (NETs) have been identified to be involved in thrombosis, but the clinical value in chronic heart failure (CHF) patients with venous thrombosis is unclear. This study focused on the expression level of NETs in the peripheral blood of patients with CHF complicated with venous thrombosis and its clinical value. METHODS: 80 patients with CHF were included and divided into 2 groups according to the occurrence of venous thrombosis, and the expression levels of NETs in peripheral venous blood and lesion veins of the patients were detected through fluorescent staining. Myeloperoxidase-DNA (MPO-DNA) and citrullinated histone H3 (CitH3), markers of NETs, were detected by enzyme linked immunosorbent assay kit. The receiver operating characteristic (ROC) curve was used to analyze the value of peripheral venous blood NETs in the diagnosis of venous thrombosis in CHF patients, while the relationship between NETs in peripheral and lesion veins was analyzed by a unitary linear regression model. RESULTS: The results showed that the concentration of NETs, MPO-DNA, and CitH3 in CHF patients combined with venous thrombosis was markedly higher than that in patients without venous thrombosis, and the concentration of NETs, MPO-DNA, and CitH3 in lesion venous blood was notably higher than that in peripheral venous blood. Binary logistics regression analysis showed that NETs in peripheral venous blood were an independent risk factor for venous thrombosis in patients with heart failure. The unitary linear regression model fitted well, indicating a notable positive correlation between NETs concentrations in peripheral and lesion veins. The area under the ROC curve for diagnosing venous thrombosis was 0.85, indicating that peripheral blood NETs concentration levels could effectively predict venous thrombosis in CHF patients. CONCLUSION: The expression level of NETs was high in the peripheral blood of CHF patients combined with venous thrombosis and was the highest in lesion venous blood. NETs levels in peripheral blood had the value of diagnosing venous thrombosis in CHF patients, and the concentrations of NETs in peripheral and lesion veins are markedly positively correlated.


Assuntos
Armadilhas Extracelulares , Insuficiência Cardíaca , Trombose Venosa , Humanos , Armadilhas Extracelulares/química , Armadilhas Extracelulares/metabolismo , Relevância Clínica , Neutrófilos , Histonas/análise , Histonas/metabolismo , Trombose Venosa/complicações , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , DNA
15.
OMICS ; 28(3): 103-110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466948

RESUMO

Trastuzumab is a monoclonal antibody used in oncotherapy for HER2-positive tumors. However, as an adverse effect, trastuzumab elevates the risk of heart failure, implying the involvement of energy production and mitochondrial processes. Past studies with transcriptome analysis have offered insights on pathways related to trastuzumab safety and toxicity but limited study sizes hinder conclusive findings. Therefore, we meta-analyzed mitochondria-related gene expression data in trastuzumab-treated cardiomyocytes. We searched the transcriptome databases for trastuzumab-treated cardiomyocytes in the ArrayExpress, DDBJ Omics Archive, Gene Expression Omnibus, Google Scholar, PubMed, and Web of Science repositories. A subset of 1270 genes related to mitochondrial functions (biogenesis, organization, mitophagy, and autophagy) was selected from the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology Resource databases to conduct the present meta-analysis using the Metagen package (Study register at PROSPERO: CRD42021270645). Three datasets met the inclusion criteria and 1243 genes were meta-analyzed. We observed 69 upregulated genes after trastuzumab treatment which were related mainly to autophagy (28 genes) and mitochondrial organization (28 genes). We also found 37 downregulated genes which were related mainly to mitochondrial biogenesis (11 genes) and mitochondrial organization (24 genes). The present meta-analysis indicates that trastuzumab therapy causes an unbalance in mitochondrial functions, which could, in part, help explain the development of heart failure and yields a list of potential molecular targets. These findings contribute to our understanding of the molecular mechanisms underlying the cardiotoxic effects of trastuzumab and may have implications for the development of targeted therapies to mitigate such effects.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/efeitos adversos , Trastuzumab/efeitos adversos , Insuficiência Cardíaca/metabolismo , Expressão Gênica
16.
Hypertension ; 81(5): 1008-1020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426347

RESUMO

After half a century of evidence suggesting the existence of mineralocorticoid receptors (MR) in the vasculature, the advent of technology to specifically knockout the MR from smooth muscle cells (SMCs) in mice has elucidated contributions of SMC-MR to cardiovascular function and disease, independent of the kidney. This review summarizes the latest understanding of the molecular mechanisms by which SMC-MR contributes to (1) regulation of vasomotor function and blood pressure to contribute to systemic and pulmonary hypertension; (2) vascular remodeling in response to hypertension, vascular injury, obesity, and aging, and the impact on vascular calcification; and (3) cardiovascular pathologies including aortic aneurysm, heart valve dysfunction, and heart failure. Data are reviewed from in vitro studies using SMCs and in vivo findings from SMC-specific MR-knockout mice that implicate target genes and signaling pathways downstream of SMC-MR. By regulating expression of the L-type calcium channel subunit Cav1.2 and angiotensin II type-1 receptor, SMC-MR contributes to myogenic tone and vasoconstriction, thereby contributing to systemic blood pressure. MR activation also promotes SMC proliferation, migration, production and degradation of extracellular matrix, and osteogenic differentiation by regulating target genes including connective tissue growth factor, osteopontin, bone morphogenetic protein 2, galectin-3, and matrix metallopeptidase-2. By these mechanisms, SMC-MR promotes disease progression in models of aging-associated vascular stiffness, vascular calcification, mitral and aortic valve disease, pulmonary hypertension, and heart failure. While rarely tested, when sexes were compared, the mechanisms of SMC-MR-mediated disease were sexually dimorphic. These advances support targeting SMC-MR-mediated mechanisms to prevent and treat diverse cardiovascular disorders.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Calcificação Vascular , Animais , Camundongos , Pressão Sanguínea/fisiologia , Receptores de Mineralocorticoides/metabolismo , Músculo Liso Vascular/metabolismo , Hipertensão Pulmonar/metabolismo , Osteogênese , Insuficiência Cardíaca/metabolismo , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
17.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433304

RESUMO

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Assuntos
Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Miócitos Cardíacos/metabolismo , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Sinalização do Cálcio , Fatores de Tempo , Acoplamento Excitação-Contração , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Terapia por Estimulação Elétrica/instrumentação , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo
18.
JAMA ; 331(9): 778-791, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441582

RESUMO

Importance: Systemic amyloidosis from transthyretin (ATTR) protein is the most common type of amyloidosis that causes cardiomyopathy. Observations: Transthyretin (TTR) protein transports thyroxine (thyroid hormone) and retinol (vitamin A) and is synthesized predominantly by the liver. When the TTR protein misfolds, it can form amyloid fibrils that deposit in the heart causing heart failure, heart conduction block, or arrhythmia such as atrial fibrillation. The biological processes by which amyloid fibrils form are incompletely understood but are associated with aging and, in some patients, affected by inherited variants in the TTR genetic sequence. ATTR amyloidosis results from misfolded TTR protein deposition. ATTR can occur in association with normal TTR genetic sequence (wild-type ATTR) or with abnormal TTR genetic sequence (variant ATTR). Wild-type ATTR primarily manifests as cardiomyopathy while ATTR due to a genetic variant manifests as cardiomyopathy and/or polyneuropathy. Approximately 50 000 to 150 000 people in the US have heart failure due to ATTR amyloidosis. Without treatment, heart failure due to ATTR amyloidosis is associated with a median survival of approximately 5 years. More than 130 different inherited genetic variants in TTR exist. The most common genetic variant is Val122Ile (pV142I), an allele with an origin in West African countries, that is present in 3.4% of African American individuals in the US or approximately 1.5 million persons. The diagnosis can be made using serum free light chain assay and immunofixation electrophoresis to exclude light chain amyloidosis combined with cardiac nuclear scintigraphy to detect radiotracer uptake in a pattern consistent with amyloidosis. Loop diuretics, such as furosemide, torsemide, and bumetanide, are the primary treatment for fluid overload and symptomatic relief of patients with ATTR heart failure. An ATTR-directed therapy that inhibited misfolding of the TTR protein (tafamidis, a protein stabilizer), compared with placebo, reduced mortality from 42.9% to 29.5%, reduced hospitalizations from 0.7/year to 0.48/year, and was most effective when administered early in disease course. Conclusions and Relevance: ATTR amyloidosis causes cardiomyopathy in up to approximately 150 000 people in the US and tafamidis is the only currently approved therapy. Tafamidis slowed progression of ATTR amyloidosis and improved survival and prevented hospitalization, compared with placebo, in people with ATTR-associated cardiomyopathy.


Assuntos
Amiloidose , Cardiomiopatias , Insuficiência Cardíaca , Pré-Albumina , Humanos , Amiloidose/complicações , Amiloidose/epidemiologia , Amiloidose/genética , Amiloidose/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina , Pré-Albumina/genética , Pré-Albumina/metabolismo , Negro ou Afro-Americano/etnologia , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/estatística & dados numéricos , Estados Unidos/epidemiologia , África Ocidental , Dobramento de Proteína
19.
Int J Biol Sci ; 20(5): 1815-1832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481817

RESUMO

Chronic pressure overload can cause pathological cardiac remodeling and eventually heart failure. The ubiquitin specific protease (USP) family proteins play a prominent role in regulating substrate protein degradation and cardiac structural and functional homeostasis. Although USP38 is expressed in the heart, uncertainty exists regarding the function of USP38 in pathological cardiac remodeling. We constructed and generated cardiac specific USP38 knockout mice and cardiac specific USP38 overexpression mice to assess the role of USP38 in pathological cardiac remodeling. Furthermore, we used co-immunoprecipitation (Co-IP) assays and western blot analysis to identify the molecular interaction events. Here, we reported that the expression of USP38 is significantly elevated under a hypertrophic condition in vivo and in vitro. USP38 deletion significantly mitigates cardiomyocyte enlargement in vitro and hypertrophic effect induced by pressure overload, while overexpression of USP38 markedly aggravates cardiac hypertrophy and remodeling. Mechanistically, USP38 interacts with TANK-binding kinase 1 (TBK1) and removes K48-linked polyubiquitination of TBK1, stabilizing p-TBK1 and promoting the activation of its downstream mediators. Overexpression of TBK1 in the heart of cardiac specific USP38 knockout mice partially counteracts the benefit of USP38 deletion on pathological cardiac remodeling. The TBK1 inhibitor Amlexanox significantly alleviates pressure overload induced-cardiac hypertrophy and myocardial fibrosis in mice with USP38 overexpression. Our results demonstrate that USP38 serves as a positive regulator of pathological cardiac remodeling and suggest that targeting the USP38-TBK1 axis is a promising treatment strategy for hypertrophic heart failure.


Assuntos
Insuficiência Cardíaca , Transdução de Sinais , Animais , Camundongos , Cardiomegalia/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Remodelação Ventricular/genética
20.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473855

RESUMO

In order to determine the behavior of the right ventricle, we have reviewed the existing literature in the area of cardiac remodeling, signal transduction pathways, subcellular mechanisms, ß-adrenoreceptor-adenylyl cyclase system and myocardial catecholamine content during the development of left ventricular failure due to myocardial infarction. The right ventricle exhibited adaptive cardiac hypertrophy due to increases in different signal transduction pathways involving the activation of protein kinase C, phospholipase C and protein kinase A systems by elevated levels of vasoactive hormones such as catecholamines and angiotensin II in the circulation at early and moderate stages of heart failure. An increase in the sarcoplasmic reticulum Ca2+ transport without any changes in myofibrillar Ca2+-stimulated ATPase was observed in the right ventricle at early and moderate stages of heart failure. On the other hand, the right ventricle showed maladaptive cardiac hypertrophy at the severe stages of heart failure due to myocardial infarction. The upregulation and downregulation of ß-adrenoreceptor-mediated signal transduction pathways were observed in the right ventricle at moderate and late stages of heart failure, respectively. The catalytic activity of adenylate cyclase, as well as the regulation of this enzyme by Gs proteins, were seen to be augmented in the hypertrophied right ventricle at early, moderate and severe stages of heart failure. Furthermore, catecholamine stores and catecholamine uptake in the right ventricle were also affected as a consequence of changes in the sympathetic nervous system at different stages of heart failure. It is suggested that the hypertrophied right ventricle may serve as a compensatory mechanism to the left ventricle during the development of early and moderate stages of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ventrículos do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Catecolaminas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA